Landen 変換
大小2つの円があって一方が全く他方の内部にあるものとします。大円の中心をC、小円のをcとし、C及びcを通る大円の直径をABとし、大小二円の半径をそれぞれR,rとします。中心間の距離をδとすればδ<R−rです。 小円にTにおいて接する大円の一つの弦FF′を引き、 ∠ACF=2φ, ∠ACF′=2φ′ とします。そのとき ¯FT2=¯Fc2−r2=(R2+δ2+2Rδcos2φ)−r2=(R+δ)2−r2−4Rδsin2φ です。ここで 4Rδ(R+δ)2−r2=k2 とおけば、 ¯FT=√(R+δ)2−r2√1−k2sin2φ となります。全く同様にして ¯F′T=√(R+δ)2−r2√1−k2sin2φ′ 従って ¯FT:¯F′T=√1−k2sin2φ:√1−k2sin2φ′ の関係を得ることができます。 今FF′が小円に接しつつGG′のように変位したと考え、φ及びφ′における変化をdφ,dφ′とし、FF′とGG′の交点をLとすれば、 dφ:dφ′=⌢FG:⌢F′G′ dφ,dφ′が無限小となる極限においては ⌢FG:⌢F′G′=¯FG:¯F′G′=¯FL:¯LF′=¯FT:¯TF′ よって dφ:dφ′=¯FT:¯TF′ これと(2)から dφ√1−k2sin2φ=dφ′√1−k2sin2φ′ の結果が得られます。ここで0≤k≤1となることは(1)においてδ≤R−rの仮定を用いることで容易に証明できることになります。 φとφ′の間に成立する(3)の関係はkにのみ関するものでR,r,δなどの個々の値には無関係です。よって今kとRを一定に保ちつつr→0とすれば、極限において 4Rδ(R+δ)2=k2 従って δ=1−k′1+k′R, k′=√1−k2 を得ることができます。直径AB上にこのδの値に等しく¯COをとれば、点Oは前の円cの縮小した極限とみられます。 ゆえにOを通る弦FF′を引き ∠ACF=2φ, ∠ACF′=2φ′ とすれば、(3)がやはり成立します。またTもOに一致しているのであるから ¯FO=(R+δ)√1−k2sin2φ 今∠AOF=φ1とすれば、 ¯CF:¯CO=sinφ1:sin(2φ−φ1) すると ¯CF=R, ¯CO=k1R(ただし k1=1−k′1+k′) であるから、 sin(2φ−φ1)=ksinφ1 となります。また一方において直接 φ1=φ+φ′−π2 であることも容易に証明されます。これを微分すれば dφ1=dφ+dφ′ 従って dφ1dφ=1+dφ′dφ=1+OF′FO=FF′FO さてFOは(4)に示す通りですが、¯FF′がまだ計算していません。次にこれを求めましょう。まず¯FF′=¯FO+¯OF′で、¯FOと¯OF′の差と積は次の通りです。 ¯OF−¯OF′=2⋅¯OCcosφ1=2Rk1cosφ1¯OF⋅¯OF′=¯OA⋅¯OB=R(1+k1)⋅R(1−k1)=R2(1−k12) 従って ¯OF+¯OF′=√(¯OF−¯OF′)2+4⋅¯OF⋅¯OF′=√4R2k12cos2φ1+4R2(1−k12)=2R√1−k12sin2φ1 これと(4)を(6)に代入すると dφ1dφ=2RR+δ√1−k12sin2φ1√1−k2sin2φ そしてここに 2RR+δ=21+k1 であるから、結局 dφ√1−k2sin2φ=1+k12dφ1√1−k12sin2φ1 の式を得ることができます。 (7)の両辺にある第一種楕円積分はその母数が異なります。これらを比較してみると k1=1−k′1+k′ だから k′=1−k11+k1 従って k2=1−(1−k11+k1)2=4k1(1+k1)2 ゆえに (kk1)2=4k1(1+k1)2>1 よって 0≤k1≤k です。すなわち(7)は第一種楕円積分を同じ形でさらに小さな母数のものに帰着させられることを示すもので、ここに新旧両変数の関係は(5)の通りです。換言すれば、(7)の左辺において(5)の変換を行えばさらに小さな母数の右辺を得ます。この変換をLanden変換といいます。 (5)はまた次のように書き直せます。 k1=sin(2φ−φ1)sinφ1 よって k′=1−k11+k1=sinφ1−sin(2φ−φ1)sinφ1+sin(2φ−φ1)=2sin(φ1−φ)cosφ2sinφcos(φ1−φ) ゆえに tan(φ1−φ)=k′tanφ この方が(5)よりも実際には便利です。 Landen変換を応用して実際に第一種楕円積分を計算することは次回に譲ることにして、ここでついでに上記の理論の副産物としてsn関数の加法公式を導いておきましょう。 (3)はφとφ′の間の微分方程式ですが微分を用いない関係式も得ることができます。 CからFF′に下ろした垂線の足をfとすれば、 ¯FT+¯F′T=2⋅¯Ff=2Rsin(φ′−φ)¯FT−¯F′T=2⋅¯fT=2δsin(φ′+φ) これから √1−k2sin2φ+√1−k2sin2φ′sin(φ′−φ)=1+√1−k2sin2αsinα√1−k2sin2φ−√1−k2sin2φ′sin(φ′+φ)=1−√1−k2sin2αsinα を得ます。ここにαはφ=0のときのφ′の値とします。この二式から sin2φ′−sin2φsinφ′cosφ√1−k2sin2φ+sinφcosφ′√1−k2sin2φ′=sinα を得ます。これはすなわちφ,φ′の間の一つの関係でちょうど微分方程式(3)の解に相当するものです(αは積分定数)。 ここで v=∫φ0dφ√1−k2sin2φ, u=∫φ′0dφ′√1−k2sin2φ′ とおけば、(3)の一解はu−v=C1(定数)で、また(9)は sn2u−sn2vsn u cn v dn v+sn v cn u dn u=C2(定数) となります。これらの二つの解を比較することによって sn(u−v)=sn2u−sn2vsn u cn v dn v+sn v cn u dn u=sn u cn v dn v−sn v cn u dn u1−k2sn2u sn2v を得ます。
参考文献
参考文献は以下の通り。
[1]竹内端三,『楕円関数論』,岩波書店,1936
出版社在庫無し、著作権消失済み。
[2]E.T. Whittaker, et al., A Course of Modern Analysis (AMS PRESS, 1927)
著作権消失済み。
[3]戸田盛和,『楕円関数入門』,日本評論社,2001
[4]戸田盛和,『臨時別冊・数理科学SGC ライブラリ49 ソリトンと物理学』,サイエンス社,2006
同出版社より電子書籍の形で復刊済み。
[5]Landau・Lifshitz,『力学』,東京図書,2017